Discrete strip-concave functions, Gelfand-Tsetlin patterns, and related polyhedra
نویسندگان
چکیده
Discrete strip-concave functions considered in this paper are, in fact, equivalent to an extension of Gelfand-Tsetlin patterns to the case when the pattern has a not necessarily triangular but convex configuration. They arise by releasing one of the three types of rhombus inequalities for discrete concave functions (or “hives”) on a “convex part” of a triangular grid. The paper is devoted to a combinatorial study of certain polyhedra related to such functions or patterns, and results on faces, integer points and volumes of these polyhedra are presented. Also some relationships and applications are discussed. In particular, we characterize, in terms of valid inequalities, the polyhedral cone formed by the boundary values of discrete strip-concave functions on a grid having trapezoidal configuration. As a consequence of this result, necessary and sufficient conditions on a pair of vectors to be the shape and content of a semi-standard skew Young tableau are obtained.
منابع مشابه
Vertices of Gelfand-Tsetlin Polytopes
This paper is a study of the polyhedral geometry of Gelfand–Tsetlin polytopes arising in the representation theory of glnC and algebraic combinatorics. We present a combinatorial characterization of the vertices and a method to calculate the dimension of the lowest-dimensional face containing a given Gelfand–Tsetlin pattern. As an application, we disprove a conjecture of Berenstein and Kirillov...
متن کاملThe boundary of the Gelfand–Tsetlin graph: A new approach
The Gelfand–Tsetlin graph is an infinite graded graph that encodes branching of irreducible characters of the unitary groups. The boundary of the Gelfand–Tsetlin graph has at least three incarnations — as a discrete potential theory boundary, as the set of finite indecomposable characters of the infinitedimensional unitary group, and as the set of doubly infinite totally positive sequences. An ...
متن کاملHilbert Series and Gelfand Duality
Another example of such a duality are the formulas of Gelfand-Tsetlin for matrix elements of irreducible representations of the algebra of complex matrices with trace 0 and the formulas for coordinates in the group of unitary matrices... In all of these cases the duality consists in the fact that functions of discrete arguments satisfy finite difference equations analogous to differential equat...
متن کاملWeight bases of Gelfand–Tsetlin type for representations of classical Lie algebras
This paper completes a series devoted to explicit constructions of finitedimensional irreducible representations of the classical Lie algebras. Here the case of odd orthogonal Lie algebras (of type B) is considered (two previous papers dealt with C and D types). A weight basis for each representation of the Lie algebra o(2n + 1) is constructed. The basis vectors are parametrized by Gelfand–Tset...
متن کاملGelfand-Tsetlin polytopes and Feigin-Fourier-Littelmann-Vinberg polytopes as marked poset polytopes
Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 112 شماره
صفحات -
تاریخ انتشار 2005